Algebra 1 Diagnostic Test

Name: _______
Last Course Completed: ______
School:

Directions: Complete all problems on this paper and show as much work as possible. If you don't know how to solve a problem, leave the problem blank.

1. Solve the following equation for x.

$$3(x + 4) - 2(x - 3) = 13$$

2. Solve the following equation for *y*.

$$\frac{1}{2}(y+4) + \frac{2}{3}y = 16$$

3. The following formula is used to find the surface area of a cone.

$$S = \prod r\ell + \prod r^2$$

Part A: Solve for *l*.

Part B: Find ℓ when S = 219.8 and r = 5. Use 3.14 for Π .

4. Solve the following equation for x.

$$-2(x + 5) + 1 = 3x - 4(x + 2) + 2$$

5. **Part A:** Graph the following system of equations on the grid. Label each equation.

line *a*: 2x - 2y = 10

line b: y = -4x + 10

Part B: Identify the solution to the system of equations.

9. Lyla has \$150 to purchase shrubs for her front yard. Small shrubs cost \$20 per shrub and large shrubs cost \$35 per shrub.

Part A: Write an equation that can be used to determine the number of small shrubs, x, and the number of large shrubs, y that Lyla can purchase.

Part B: If Lyla purchases 2 large shrubs, what is the greatest amount of small shrubs that she can purchase? Show how your determined your answer.

10. Given the following equation:

$$y = \frac{3}{4}x + 2$$

Part A: Write an equation for a line that is parallel to the line represented by this equation.

Part B: Write an equation for a line that is perpendicular to the line represented by this equation.

11. Which answer choice best describes the line of best fit for the following scatter plot.

- A. The line of best fit would be a straight line through (0,10) and (10,0).
- B. The line of best fit would be a straight line through (0,8) and (10,0).
- C. The line of best fit would be a straight line through (0,6) and (8,0).
- D. There is no line of best fit.

12. Solve the following system of equations. Be sure to show your work!

$$\dot{x} = 2y - 4$$

$$3x + 5y = 21$$

13. Solve the following system of equations. Be sure to show your work!

$$2x + 5y = -4$$

$$3x - 2y = -6$$

14. Liza has \$50 in her savings account and saves \$10 per week. Frank has \$350 in his savings account and spends \$15 per week. In how many weeks will they have the same amount in their savings accounts?

15. Solve the following inequality.

$$-3(2a-6) < 12$$

16. Vera has at most \$30 to buy gas and get a car wash. Gas costs \$2.30 per gallon and a car wash costs \$8.00.

Part A: Write an inequality that can be used to determine the number of gallons of gas, x, Vera can purchase.

Part B: Solve the inequality to identify how many gallons of gas Vera can purchase.

17. Part A: Graph the following system of inequalities on the grid.

$$y \ge -3x + 8$$

2x + 3y < 12

Part B: Identify two solutions.

18. Three relations are shown.

Part A: Identify which relations are functions.

Part B: For the relations that are a function, identify the domain and range.

Domain: Range: Domain: Range:

Domain: Range:

19. Determine whether the following function is linear or exponential. Explain your reasoning.

X	-2	-1	0	1	2	3
f(x)	3	9	27	81	243	729

$$f(x) = -2x + 9$$

$$g(x) = 3^x$$

$$h(x) = 2x^2 + 3x - 4$$

Part A: Evaluate g(4).

Part B: Evaluate h(-1).

21. Simplify. All exponents must be positive.

Part A: $4a^3(2a^5)$

Part B: $(2a^4)^3 + 2(2a^2)^2$

Part C: $\frac{3a^4b^5c^2}{4a^2b^2c}$

Part D: $2a^{-1}b^3c^{-4}$

22. Simplify each expression.

Part A:
$$(3x^3 + 2x^2 + 3x - 5) + (2x^3 - 4x + 2)$$

Part B:
$$(5x^2 - 4x + 6) - (2x^2 + 3x - 2)$$

Part C:
$$3x^2(4x^2+2x-2)$$

Part D:
$$(3x + 5)(2x - 1)$$

23. A rectangle has sides with length $(x^2 + 5x + 2)$ and (4x - 2).

Part A: Write a simplified expression that represents the perimeter of the rectangle.

Part B: Write a simplified expression that represents the area of the rectangle.

24. Factor each of the polynomials completely.

Part A: $x^2 + x - 56$

Part B: $6x^2 + 10x - 4$

Part C: $2x^3y^2 + 3x^2y^5 + 2xy$

25. A right triangle has a side with length 15 inches and a hypotenuse with length 25 inches. Find the length of the second leg. Round to the nearest hundredth if needed.

26. Find the zeros for the following function:

$$F(x) = x^2 - 9x - 36$$

27. Find the values of *y* for the following equation:

$$2y^2 + 2y - 10 = 2$$

28. A ball is shot from a canon into the air with an upward velocity of 45 ft/sec. The following function gives the height, h, of the ball at any time, t. $h(t) = -16t^2 + 45t + 1.5$

Part A: Find the maximum height obtained by the ball.

Part B: How long did it take for the ball to reach the ground?

29. Graph the following function on the grid. Explain how you graphed the function.

$$f(x) = x^2 - 8x + 12$$

