Home
#### Algebra and Pre-Algebra Lessons

Algebra 1 | Pre-Algebra | Practice Tests | Algebra Readiness Test
#### Algebra E-Course and Homework Information

Algebra E-course Info | Log In to Algebra E-course | Homework Calculator
#### Formulas and Cheat Sheets

Formulas | Algebra Cheat Sheets

Home » Solving Equations » Solving an Absolute Value Equation

# Solving an Absolute Value Equation - Lesson 1

## Absolute Value

## Example 1: Solving an Absolute Value Equation

## Example 2: Absolute Value Equations

## Example 3 - No Solution

## Quick Recap:

## Other Lessons You Might Like on Solving Equations

# Like This Page?

## Algebra Class Favorites

You've come pretty far in your algebra studies, and now as you start learning more advanced algebra topics, you may see equations with absolute value expressions.

Let's first quickly review what the term "absolute value" means.

The **absolute value** of a number is its distance from 0 on the number line.

**Remember:** Distance can never be negative; therefore, the absolute value of a number is **always positive**.

Absolute value is indicated by the **absolute value bars**: |x|

**Examples:**

| -5| = 5 (-5 is five units away from 0 on the number line).

|5| = 5 (5 is also five units away from 0 on the number line).

**More Examples:**

|-10| = 10 and |10| = 10

|-55| = 55 and |55| = 55

Did you notice how in the above examples, the answers of 10 and 55 were the same for two different expressions? By this I mean that |-10| = 10 and |10| = 10. There were two different expressions to get the answer of 10.

**So, think about this:**

Evaluate the expression:

**|x| = 4** This means: What value can we substitute for x to get an answer of 4?

**You might automatically say: x = 4 because |4| = 4

Yes, you are correct! However, this is not the only answer. You will have **two ** answers for this equation because:

**Isn't |-4| = 4 ?**

So, this answer is **x = 4 or -4.**

This concept will play an important role as we solve absolute value equations. Pay careful attention because many of your equations with have **two answers.**

If you are having trouble understanding why we have to write two equations or how to solve the absolute value equation, take a look at the following video.

You must remember that when you are solving an absolute value equation, you will want to write two separate equations to solve. This is because the value inside of the absolute value bars can be positive or negative to result in the same answer.

Let's take a look at another similar example just to clarify any problems or questions.

I hope that you are feeling more comfortable with absolute value equations. There is a time when you may not have a solution. Yes, there always has to be tricks, just to keep you on your toes.

When working with absolute value, think about what might not be possible...

What would you substitute for x in the following equations to make the equation true?

**|x| = -3**

Can you think of an answer for x? Probably not, because there is no answer. ** There is no way that you can take the absolute value of a number and have a negative answer.**

Therefore, if you come across an equation, such as the following:

**|x-5| = -4**

**You can stop right there and write the empty set as your answer.**

You do not have to write two equations and solve, because there are no real answers to this equation.

**Do not write 0** as your answer. The answer is the empty set and is written as follows:

- For most absolute value equations, you will
**write two different equations**to solve. The value inside of the absolute value can be positive or negative. - If the
**answer to an absolute value equation is negative**, then the answer is the**empty set**. No absolute value can be a negative number.

I hope that this helps in your study of equations with absolute value.

**Solving Equations Unit**

- Solving one-step equations (Addition).
- Solving one-step equations (Subtraction).
- Solving one-step equations (Multiplication).
- Solving one-step division equations.
- Solving two-step equations.
- Using the Distributive Property
- Solving Literal Equations
- Solving Equations with Fractions
- Equations with variables on both sides
- Absolute Value Equations - Lesson 2

Sign Up for Algebra Class E-courses

Click here to retrieve a lost password.

Custom Search

- FREE Solving Equations E-course
- Algebra Class E-course
- Algebra Class Products
- Algebra Practice Test
- Algebra Readiness Test
- Homework Answer Calculator
- Practice Worksheets

- Site Map
- Pre-algebra Refresher
- Solving Equations
- Graphing Equations
- Writing Equations
- Systems of Equations
- Inequalities
- Functions
- Exponents & Monomials
- Polynomials
- Quadratic Equations
- Algebra 1 Final Exam
- Square Roots and Radicals

- SAT Online Course
- Algebra Cheat Sheets - Very Popular!!
- Algebra Formulas
- Online Resources
- Contact Me
- I Want to Hear From You!
- Algebra Blog
- About Me

Copyright © 2009-2015 Karin Hutchinson ALL RIGHTS RESERVED

## Comments

We would love to hear what you have to say about this page!