Home
#### Algebra and Pre-Algebra Lessons

Algebra 1 | Pre-Algebra | Practice Tests | Algebra Readiness Test
#### Algebra E-Course and Homework Information

Algebra E-course Info | Log In to Algebra E-course | Homework Calculator
#### Formulas and Cheat Sheets

Formulas | Algebra Cheat Sheets

Home » Polynomials » Factoring Trinomials

# Factoring Trinomials

## Lesson 3 in the "Factoring Series"

## Result of Multiplying Two Binomials

## Example 1

## Example 2

## Example 3

## Need Extra Help with Factoring?

## Other Polynomial Lessons You Might Like

# Like This Page?

Factoring trinomials is probably the most common type of factoring in Algebra. In Algebra 1 we will factor trinomials that have a lead coefficient of 1. In Algebra 2, we will progress to factoring more complex trinomials whose lead coefficient is greater than 1.

To begin this lesson, it is important for you to understand the process of multiplying binomials using the FOIL method. Please be sure to review that lesson before starting this lesson.

The diagram below outlines the product of multiplying two binomials.

It's important to understand how we reach the trinomial because in this lesson we are going to work backwards to form the factors or two binomials.

Did you notice how we **added** the two last terms of each binomial (**3 & 5**) to get the **middle term **and we **multiplied** the same two last terms (**3 & 5**) in order to get the **last term** of the trinomial?

Ok, now let's work backwards. You will be given the trinomial and in order to factor the trinomial, you will need to work backwards to find the two binomials. Let's look at an example.

Just 3 easy steps to factoring trinomials. Let's take a look at another example. This example is a little more difficult because we will be working with negative and positive numbers.

TIP

When you have a trinomial with a minus sign, pay careful attention to your positive and negative numbers. In the example above, 8 and -2 are the numbers that we needed to complete our binomials; however, -8 and 2 would not have worked!

I know that factoring trinomials is tough, so let's look at one more example. Again, this trinomial will contain a minus sign, so pay careful attention to the positive and negative numbers that you choose.

Enter your expression and click "Factor".

Great Job! You have completed the Algebra 1 Polynomials Unit!

- Introduction to Polynomials (Definitions)

- Adding Polynomials

- Subtracting Polynomials

- Multiplying Polynomials

- Using the FOIL Method to Multiply Binomials

- Squaring a Binomial - Using a Special Rule

- Difference of Two Squares - "Special Binomials"

- Factoring Polynomials

Using the Greatest Common Factor (GCF)

- Factoring Polynomials by Grouping

- Factoring Trinomials with a Lead Coefficient

Greater than One

Sign Up for Algebra Class E-courses

Click here to retrieve a lost password.

Custom Search

- FREE Solving Equations E-course
- Algebra Class E-course
- Algebra Class Products
- Algebra Practice Test
- Algebra Readiness Test
- Homework Answer Calculator
- Practice Worksheets

- Site Map
- Pre-algebra Refresher
- Solving Equations
- Graphing Equations
- Writing Equations
- Systems of Equations
- Inequalities
- Functions
- Exponents & Monomials
- Polynomials
- Quadratic Equations
- Algebra 1 Final Exam
- Square Roots and Radicals

- SAT Online Course
- Algebra Cheat Sheets - Very Popular!!
- Algebra Formulas
- Online Resources
- Contact Me
- I Want to Hear From You!
- Algebra Blog
- About Me

Copyright © 2009-2015 Karin Hutchinson ALL RIGHTS RESERVED

## Comments

We would love to hear what you have to say about this page!