Equations with Absolute Value

by Amy McKain
(Brazil, IN)

Here is the question. It is 3 absolute value of x divided by 9 plus 7 equals 8.

Comments for Equations with Absolute Value

Average Rating starstarstarstarstar

Click here to add your own comments

Jan 25, 2011
Rating
starstarstarstarstar
Equations with Absolute Value
by: Karin

You solve this equation very similar to a regular equation with the absolute value.

We are going to address the absolute value in the last step.

The problem:
((3|x|)/9) + 7 = 8

Step 1: Subtract 7 from both sides.

((3|x|)/9) +7-7 = 8 -7

((3|x|)/9) = 1

Step 2: Get rid of the fraction by multiplying all terms by 9.

9((3|x|)/9)=1(9)

3|x| = 9

Step 3: Divide by 3 on both sides.

(3|x|)/3 = 9/3

|x| = 3

Now we are left with the absolute value of x = 3. Remember that absolute value means that the value of the number inside of that absolute value sign is always positive.

So we can say that:
x = 3
or -x = 3

If -x =3 then we would multiply all terms by -1 to make x positive.

-1(-x) = 3(-1)
x = -3

Basically you know that 3 or -3 could be inside of the absolute value symbol and the value of that number will always be 3.

Check your answer:

3|3|/9 + 7 = 8

9/9 + 7 = 8
1+7 = 8

So, we know that 3 works.

Now check -3

3|-3|/9 + 7 = 8
3(3)/9 + 7 = 8

9/9 + 7 = 8
1+7 = 8

-3 also works. Therefore, x could be equal to 3 or -3.

x = 3
x = -3

I hope this helps,
Karin

Click here to add your own comments

Join in and write your own page! It's easy to do. How? Simply click here to return to Students.

Need More Help With Your Algebra Studies?

Get access to hundreds of video examples and practice problems with your subscription! 

Click here for more information on our affordable subscription options.

Not ready to subscribe?  Register for our FREE Pre-Algebra Refresher and Solving Equations Unit!